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‘Abstract. We study the motion of neulral spinning pmtieles in static inhomogeneous magnetic 
fields, where the orbital motion and spin dynamic do not factorize. Using the phase-space 
representation of quantum mechanics, the Moyal propagator is obtained for ule m e  of a 
linearized field, As an example, the evolution of particles in coherenl rotational stales is 
calculated. In order to interprete the Wigner state function in a classical mechanicd way, 
we calculated the Husimi functions. 

1. Introduction 

The Wigner-Weyl-Moyal (WWM) representation of quantum mechanics has a long 
history [I]  and attained a lot of interest. Originally formulated for spinless particles 
only, the extension to particles with spin 4 was established first by means of spinor 
calculus [Z], but this did not comply with the request for a description as closely as possible 
to classical ideas. It was Stratonovich [3] and much later VMlly and Gracia-Bondla [4, 51, 
who extended the phase-space by the unit sphere and gained a much more satisfactory 
phase-space representation for particles with spin 1 and even arbitrary spin. A number 
of applications to particles moving in electromagnetic fields have been performed since 
then [6]. Allowing the interpretation of quantum mechanical states in a classical context, 
the WWM representation seems to be an interesting alternative to the abstract Hilbert space 
quantum mechanics. This applies especially for particles with spins which have no easy to 
grasp interpretation. 

We elaborate here the case of particles moving in a static inhomogeneous magnetic 
field, corresponding to the Stern-Gerlach experiment [7], where the orbital motion and the 
spin dynamic are intertwined and cannot be factorized. We assume a beam of particles with 
rather well defined velocity moving perpendicular to a strong magnetic field with a strong 
gradient in the field direction, which are detected on a screen after leaving the field region. 
For atoms in a doublet state, one expects to find two well separated spots on the screen 
corresponding to the ‘up’ and ‘down’ components of the spin. As has been messed in the 
literature (e.g. [8, 16, 171 among others), this simple picture is only a caricature of a much 
more complicated experimental situation. The two states have a final width and are not well 
separated. Particles in the state ‘spin up’ might be found in the spin down region and vice 
versa, so that there might be a real problem in assigning a pure spin state to a position on 
the detector screen. We expect new insight into this old problem by means of the Wigner 
functions which are much nearer to classical intuition than the Schrodmger function. 

In order to fix notation, in the following section we give a short introduction to the 
ww representation for particles with spin, which has been introduced by Vhilly and 
Gracia-Bondia [4, 51. In the third section, we calculate the propagator for particles with 
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arbitrary spin in a linear approximated inhomogeneous magnetic field. In the fourth section, 
we calculate and discuss the evolution of the Wigner function of spin f particles in coherent 
spin states by means of the Wigner state function. In order to interprete the Wigner function 
in a probabilistic manner, we calculate the Husimi functions from them in the last section. 

2. Wigner-Weyl-Moyal quantum mechanics 

For a non-relativistic particle with spin, the corresponding phase space is R6 Q S2, which 
is the Kronecker product of an orbital and a spin part [5] with coordinates y = (U, n) = 
( q , p , n ) ,  n : (e,$) k (sinBcos$,sinBsin@,cosf3) representing the points of the unit 
sphere S2. The non-commutative product of operators on Hilbert space translates to the 
so-called twisfed product of the corresponding functions defined over phase space: 

Here, f and g are functions over phase space. The measure over this space is dy = du d n  
with d u  = dq dp, dq = dq, dq, dq,, dp = dp, dp, dp, and d n  = sine dB d$. L is the 
integral kernel 

L ( y .  y' ,  y") = exp + 'u'Ju" + 'u"Ju) ] (3gy 
j 

r,S,t=-J 

x z;$ (n) z;, (n')Z/; (n") 

with 'u the transposed of U and the the symplectic matrix J 

I being the 3 x 3 identity matrix. The functions Z!s(-9, $) are the Wigner functions of 
the transition elements I j r ) (  j s  I. They are functions on the unit sphere and might be 
expressed 141 in terms of the usual spherical harmonics Ytm(@, $): 

The evolution of an elementary particle of mass M, charge e and spin j is described by the 
Pauli Hamiltonian, which turns in phasespace formalism to the function 

where B = rotA is the magnetic field and O(q) the scalar potential. The vector function 
J ( n )  = h , / m n  is associated to the vector spin operator. 

The analogue of the unitary evolution operator 6 = exp(-itk/fi) on Hilbert space is 
the 'Moyal propagator' 

with the Wigner function H ( y )  associated to A. 
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Figure 1. The magnetic field and the dotted region, where experiments t y p i d y  ye made. The 
field may be approximated in ulis region by a swong canstant field with a small inhomogenews 
correction. 

3. Moyal propagator for a particle moving in an inhomogeneous static magnetic field 

The Stemqerlach experiment has been made with electric neutral particles 01 atoms, which 
have a non-vanishing magnetic moment. We assume they are moving in an inhomogeneous 
magnetic field B(q) = B(-q,,O,q,) ,  which may be derived from the vector potential 
A(q) = E(0, qxqz, 0). Writing /L for the magnetic moment of the particle times the constant 
B in the magnetic field above, the relevant Hamiltonian then becomes 

In contrast to the case of any homogeneous magnetic field, spin and position operators are 
mixed here, and the Hamiltonian cannot be factorized into spin and orbital parts. No general 
analytic solution for the propagator is known for this type of problem. For special cases 
however, the dynamic of the particle may be calculated approximately. 

We assume that experiments are taken in a field region with a relatively strong constant 
magnetic field, which is typical for the Stem-Gerlach experiment. This corresponds to 
values of qz which are huge compared with qr, where the effect of the qr Jx tenn may be 
neglected [8, 91. 

This leads to a decoupling of the x ,  y and z components and the total propagator 
becomes a simple product of propagators for each component. Using p x p = p2.  we find 
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For the x and y component, this is simply the propagator for a free particle. The Ez part 
needs some elaboration. Since E, Z,, = 1 and expanding J z ( n )  = E, mhZ,,(n) we 
get 

In view of Z,, x Z,,) = S,,~Z,,, we then get 

The exponential term corresponds to aquadratic Hamiltonian, for which the propagator may 
be calculated by means of the general formula of Gadella eta1 [IO]. The propagator of a 
Hamilton function H ( u )  = ~ ' u S U  + with U = (q .p ) ,  q . p  E R" is accordingly 

with 

and 

where J is the symplectic matrix (2) and Z(f) = exp(-JSi). Doing some analysis we 
find together with (6) that 

and for a particle with spin j = 

ipZt i f i ~ " ' )  (cos W + iJjcose sin 
2 2 

%(U; 8, @) = exp -- - - ( 2Mh 96M 
Any initial state function in phase space p&) now propagates according to 

P(Y, t) = S ( Y ,  f )  x Po(Y) x E ( Y ,  I)*.  (13) 
The spectral function is simply the Fourier Eansform of the propagator [IO] 
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4. Evolution of a coherent spin state 

Let us first look at coherent rotational states (CRS) in the WM formalism. The CRS 1121 
are the eigenstates of the operator aj, with eigenvalue f r  j and orientation vector a E R3, 
la1 = 1. Let the corresponding Wigner functipn be denoted by ca. This function is most 
easily obtained from the spectral function of aJ. Let R(a) E SO(3) be a rotation operator, 
which turns the 'north' pole (0, 0, 1) to a and j ,  to a>. The phasespace function J , ( n )  
is transformed into &(n) = cm mAZL,(R(a)n) with the associated propagator 

The spectral function 

yields at E = A j the eigenfunction 5, = Z;j(R(a)n). For a spin-f particle in a pure state 
la, ,9) with + 1,912 = 1, this function may be written as 

1 &  
<a(n) = - + -an 2 2  

with a = ( R e k * , 9 ,  Im2a*@.a*or - 0'0). 
Let the initial wavepacket, which enters the magnetic field region, be a product of 

some function @(q) in configuration space and a pure spin function. We restrict our 
consideration to minimum uncertainty wavepackets, whose geometric centre about (e) = go 
and @) = po = Mu moves with velocity v 

Figure 2. The spin part of the initial Wigner function. which is a coherent rotational stale. 
polarized in the x-direction. It i s  shown from behind in order to display the negative part ,  which 
is the smaller ball. 
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Units are choosen such that 6 = 1 and E = 1. We apply the parity operator [ I  I]  on (19) 
and get the corresponding Wigner function: 

C W Muller and F W Metz 

Pk?, P, n) = -3 e-zpaq5*(q - s)$(q + 8)  d s  (20) 

1 
= - - x p [ ( ~ - q o ) ~ ] e x p [ - ~ , - w ) ~ ]  r 3  . 

The total phase-space function is the product of the coherent spin state function (18) 
and the orbital pari (20): 

(21) 
1 

Pa(% P, n) = ;;5 exp [ - (q - P D ) ~ ] ~ ~ P [ - @  -PO)’] 

- 4  

- 4  

P -Po 
( b )  - 4  

Figure 3. Free evolution of the minimum uncertainty Wigner buction (23) for I = 0 (a) and 
I 3 (b). The configuration probability density 03 )  is projected onto the left-hand side and 
the momentum probability density (34) is projected onto behind in arbiWry units. 
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The time evolution of this state function may be calculated according to (13) and ( I )  and 
we get 

Pa(49P3n.t) = P ' X ) ( q ~ x . P x . t ) P ' Y ' ( q y . P y . t ) P ~ ) ( 4 r l  P : , n , t )  (22) 
with 

p%?,p,t) = p % ? , p , t )  = - e x p [ - ( q - q o - p t / M ) * ] e x p [ - ( p - p ~ ) ~ ]  7c 

and 

1 
(23) 

P%, P .  e, c, t )  
1 I + a ,  - - - e x p [ - ( q - q 0 - p f / M + p t 2 / 4 M ) * ]  - I  .lr 2 

x exp [ - ( p  - po - pt/2)'] 

with v, = q5 - pf(q - p t j 2 M ) .  
Parts of this function are plotted for different times in figures 3, 4 and 5 together 

with the corresponding probability densities in momentum and configuration space obtained 
by integration as explained in the appendix. Figure 3 shows the orbital part of the spin 
averaged Wigner function. For the y-direction, where the magnetic field is homogeneous, 
this is especially the free evolution of the wavepacket. Note that the Wigner function 
of the wavepacket undergoes merely a deformation in phase space which has a natural 
explanation in terms of classical mechanics. This has to be contrasted with the evolution 
of the probability density in configuration space, where due to neglecting the momentum 
information only a spread is observed. This type of broadening which results from the 
rotation of the wavepacket in orbital phase space described by a complex width parameter 
should be carefully distinguished from the irreversible spreading due to diffusion processes, 
which must be described by real width parameters. 

Similarly, as shown in figure 4, where the evolution parallel to the static component 
of the magnetic field is shown, we find a much stronger effect in phase space than in 
configuration or momentum space. Almost complete separation of the spin 'up' and spin 
'down' component of the spin averaged wavefunction is found in figure 4(b) at time f = f ,  
where there is none in configuration space and still a strong overlap in momentum space. 

That the spin part of the Wigner function also carries some interesting information is 
seen in figure 5. The spin part is shown here at the lower maximum of the orbital part for 
the times f = and t = I. It has to be compared with the spin function at t = 0 from 
figure 2. At f = 4 the spin function has almost reached its final value with the direction of 
the maximum parallel to the -e, axis and a shape, that is typical for a pure spin state like 
the one shown in figure 2. 

The direction of the maximum of the spin part moved from an angle of 90" to the -e, 
axis at t = 0 to about 38" at f = 3, however the shape shows, that this is neither a pure nor 

5 



3518 C W Muller and F W Metz 

'8 

Figure 4. The propagated minimum unceaainry Wigner function (24) &er i n t e g d o n  over all 
spin directions. and projected onto the rduection. where the magnetic field is inhomogeneous 
for lime r = f (a) and f = f (b).  We have chaoxn qo = 10. The configuntion and momentum 
probability density is projected as in figure 3. 

a conventional mixed spin state with positive eigenvalues. Because of the intertwinement 
of the spin and orbital motion in this region, there is no simple interpretation [ 151, similar 
to the negative probabilities of Wigner functions on the orbital phase space. 

5. Probabilities in phase space 

In order to interprete the Wigner phase-space function in a classical mechanical way, we need 
some kind of smoothing procedure, that washes out the pseudoprobability structure. Most 
famous is the family of Husimi functions p: [13, 141, which is essentially the expectation 
value of the density operator j in some squeezed coherent state Iq/o,up) of the Weyl 
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(a )  i 

Figure 5. Spin p m  of the propagated Wigner function (24) at time t = $. (4, p )  = (9.5. -0.75) 
(a) md t = I .  (4, p )  = (8.5. -1.25) (b), where the orbital pan of the Wignner function reaches 
a mwimum (see figure 3). 

algebra with the squeezing parameter U 

P,"(n? P) = (q/o. uPIBlq/% UP) , (25) 
It has a simple probabilistic interpretation and in the limiting cases U --t 0 and U + CO we 
recover the configuration resp. momentllm probability density 

lim P%LP)/U = 16(q)12 (26) 

o+m lim p,"(q,p)u = Ix(P)I'. (27) 

0-0 

In a similar way we may define the Husimi analogue function Q ,  of the CRS [ U )  as 

Q,(n) = (nlu)(uln) = <n(n')<a(n')dn' = i + iun. (28) 

The Husimi function may be calculated directly from the Wigner function pw by convolution 
with the Wigner function of the squeezed coherent state lq/u, up) 

Ss 

p, H (q, p) = - ' S  pw(q' ,  p')e-(d-4)'ls2-(d-P)z~z dq'dp', (29) = F 
Integrating over all spin directions, we obtain from (24) the Husimi function p," (again only 
for the z-direction) 

H H l + a Z  H 
Pc (4. P) = - P,-llZ + 2 P C . l I Z  

(1 t U*)* t (t/M)2 

x exp ( - [q - 90 + pmr2(u2 - 1)/(1+ u 2 ) 2 ~  

-(uZp t po)t/(l + u2)MIZ/[1 t U* + ( t / M ) 2 / ( 1  + u7]} 
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Figure 6. The Husimi function (30) after integration over all spin directions ar time I = I (a )  
and t = 5 (6). The configuration and momentum probabWy density (26) and (27) is also shown 
LS in figure 3. 

For a qualitative comparison we give a surface plot of the two phase space distributions 
(24) and (30) in figure 7. The parabola is the classical trajectory, which corresponds in 
accordance with the Ehrenfest theorem to the position and momentum expectation values, 
thus the Centre of the Gaussian state functions. We remark that in addition to the shear 
flow discussed above, we now observe also in phase space an additional spread increasing 
with a time-dependent factor [ I  -+ ( t / 4M)2] ' /2  similar to the one found in the configuration 
space density. This is the price one has to pay for a probabilistic interpretation on the 
basis of the cs of the Weyl algebra. However this factor might be partially reduced by 
choosing a squeezing parameter U z 1 or a correlated squeezed state with the largest axis 
parallel to the average velocity of the Husimi function. The latter are most easily obtained 
by a free evolution of the unified state along a second path which avoids the region of the 
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Figure 7. Surface plot of the Wigner function pw (24) (full curve) and the Husimi function p: 
(30) with o = 1 (broken curve) at time f = 5 for the spin ‘up’ component. We have ploued 
here only the uncertainty ellipses, where the function values ate half their maximum value. The 
parabola corresponds to lhe classical trajectory 

magnetic field and combines somewhere with one of the Stern-Gerlach components similar 
to standard double slit experiments. 

6. Summary 

We show that the Wigner-Weyl-Moyal formalism provides an interesting approach to the 
time evolution of spinning particles in inhomogeneous magnetic fields. For large times, 
one finds two well separated regions of particles in pure spin ‘up’ resp. ‘down’ state. 
The time-dependent spreading, which is well known from the evolution of wavepackets 
in configuration space, does not occure for the Wigner function. For intermediate times 
however, there is a intertwinement of spin and orbital motion, so that there is no simple 
interpretation of the spin state or orbital parts of the Wigner function. Husimi functions 
do not suffer from this drawback, but they reintroduce the undesired spreading if they are 
based on coherent states with their axes fixed in phase space. 
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Appendix 

The configuration or momentum probability density, as shown in figures 3 . 4  and 6 is found 
by integration of the Wigner function 

C W Muller and F W Met: 

where the configuration representation is connected with the momentum representation via 
the Fourier transform 

We obtain from (24). again only for the L coordinates 
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