IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Phase-space study of the Stern-Gerlach experiment

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 3511
(http://iopscience.iop.org/0305-4470/27/10/026)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:48

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

1. Phys, A: Math, Gen. 27 (1994) 3511-3522. Printed in the UK

Phase-space study of the Stern—-Gerlach experiment
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Fakultit fiir Chemie, Universitit Konstanz, D-78434 Konstanz, Germany

Received 12 November 1993

"Abstract. 'We study the motton of neutral spinning particles in static inthomogeneous magnetic
fields, where the orbital motion and spin dynamic do not factorize. Using the phase-space
representation of quanturmn mechanics, the Moyal propagator is cobtained for the case of a
linearized field. As an example, the evolution of particles in coherent rotational states is
calculated. In order to interprete the Wigner state function in a classical mechanical way,
we calculated the Husimi functions,

1. Introduction

The Wigner—-Weyl-Moyal (WWwM) representation of quantum mechanics has a long
history [1) and attained a lot of interest. Originally formulated for spinless particles
only, the extension to particles with spin % was established first by means of spinor
calculus [2], but this did not comply with the request for a description as closely as possible
to classical ideas. It was Stratonovich [3] and much later Vérilly and Gracia-Bondia [4, 5],
who extended the phase-space by the unit sphere and gained a much more satisfactory
phase-space representation for particles with spin % and even arbitrary spin. A number
of applications to particles moving in electromagnetic fields have been performed since
then [6]. Allowing the interpretation of quantum mechanical states in a classical context,
the WwM representation seems to be an interesting alternative to the abstract Hilbert space
quantum mechanics., This applies especially for particles with spins which have no easy to
grasp interpretation.

We elaborate here the case of particles moving in a static inhomogeneous magnetic
field, corresponding to the Stern—Gerlach experiment [7], where the orbital motion and the
spin dynamic are intertwined and cannct be factorized. We assume a beam of particles with
rather well defined velocity moving perpendicutar to a strong magnetic field with a strong
gradient in the field direction, which are detected on a screen after leaving the field region.
For atoms in a doublet state, one expects to find two well separated spots on the screen
corresponding to the ‘up’ and ‘down’ components of the spin. As has been stressed in the
literature (e.g. [8, 16, 17] among others), this simple picture is only a caricature of a much
more complicated experimental situation. The two states have a final width and are not well
separated. Particles in the state ‘spin up’ might be found in the spin down region and vice
versa, 50 that there might be a real problem in assigning a pure spin state to 2 position on
the detector screen. We expect new insight into this old problem by means of the Wigner
functions which are much nearer to classical intuition than the Schridinger function.

In order to fix notation, in the following section we give a shoit introduction to the
WWM representation for particles with spin, which has been introduced by Virilly and
CGracia-Bondia [4, 5]. In the third section, we calculate the propagator for particles with
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arbitrary spin in a linear approximated inhomogeneous magnetic field. In the fourth section,
we calculate and discuss the evolution of the Wigner function of spin % particles in coherent
spin states by means of the Wigner state function. In order to interprete the Wigner function
in a probabilistic manner, we calculate the Husimi functions from them in the last section.

2. Wigner—Weyl-Moyal quantum mechanics

For 2 non-relativistic particle with spin, the corresponding phase space is R® @ S?, which
is the Kronecker product of an orbital and a spin part [S] with coordinates ¥ = (u, n) =
(g.p,n}, n: (B,¢) — (sinfcos¢,sindsing, cos@) representing the points of the unit
sphere 52, The non-commutative product of operators on Hilbert space translates to the
so-called twisted product of the corresponding functions defined over phase space:

(Fxg)y) = j];af'@ 5 f]laﬁ@ 5 FON ey LGy Yy dy". (1)

Here, f and g are functions over phase space. The measure over this space is dy = dudn
with du = dgdp, dg = dg. dq,dq.;, dp = dp.dp,dp, and dn = sin8d0d¢. L is the
integral kernel

i 2j + 132
LGy, ¥, y") = exp [%(I“J o + ' + ’H"Ju)} (%)
j : .
x Y. ZLmZLm)Zm")
1S p=-—f

with 74 the transposed of u and the the symplectic matrix J:

o I
J = ( I 0 ) (2)
I being the 3 x 3 identity matrix. The functions zl (@, ¢) are the Wigner functions of

the transition elements | jr){js|. They are functions on the unit sphere and might be
expressed [4] in terms of the usual spherical harmonics Y, (8, ¢):

. Jam 2 i !
L9 =572, ‘2”1( ros—r
i=0

The evolution of an elementary particle of mass M, charge e and spin j is described by the
Pauli Hamiltonian, which turns in phase-space formalism to the function

7 )n.,-,(e,qsn. )

1 2 /1
H@.p.m) =5 (p+ 24@) - = B@J(m) + ¢ 0@ @

where B = rot A is the magnetic field and ®(g) the scalar potential. The vector function
J(n) = /(7 + 1) n is associated to the vector spin operator.

The analogue of the unitary evolution operator /' = exp(—it A /) on Hilbert space is
the ‘Moyal propagator’

_ 3 iHOD _, it 1 /=ity
u(}’;f)—expx (- 7 )—I—EH*{-ET(T) HxH

1 (=it
+3—"(—7-l-") HxHxH+--

with the Wigner function H(y) associated to A.
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Figure 1. The magnetic field and the datted region, where experiments typically are made. The
field may be approximated in this region by a strong constant field with a small inhomogenecus
correction.

3. Moyal propagator for a particle moving in an inhomogeneous static magnetic field

The Stern—Gerlach experiment has been made with electric neutral particles or atoms, which
have a non-vanishing magnetic moment. We assume they are moving in an inhomogeneous
magnetic field B(g) = B(—g.,0,q,), which may be derived from the vector potential
A(g) = B(0, g,q,, 0). Writing u for the magnetic moment of the particle times the constant
B in the magnetic field above, the relevant Hamiltonian then becomes

1
H(g, p,n} = 2P — b (@ do(m) = g:Jx(n)) . 5)

In contrast to the case of any homogeneous magnetic field, spin and position operators are
mixed here, and the Hamiltonian cannot be factorized into spin and orbital parts. No general
analytic solution for the propagator is known for this type of problem. For special cases
however, the dynamic of the particle may be calculated approximately.

We assume that experiments are taken in a field region with a relatively strong constant
magnetic field, which is typical for the Stern-Gerlach experiment. This corresponds to
values of g, which are huge compared with g, where the effect of the g, J; term may be
neglected [8, 9].

This leads to a decoupling of the x, y and z components and the total propagator
becomes a simple product of propagators for each component. Using p x p = p?, we find

. iHt itp? itp] |
E(g, p, n) = exp, (_T) = exp [—2 M’;l] exp [—ﬁ:l E:(q;, p2a ) (6)
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with
. itf 1 ,
E:(qz, pza M) = eXp, At pg S (n) ) | - Q)

For the x and y component, this is simply the propagator for a free particle. The E, part
needs some elaboration. Since 3., Zmn = | and expanding J,(n) = 3., mhZyn(n) we
get

1
Ez(Qz’ P ﬂ.) = expx[ Z Zm,,,(n) [ (ZM By — mﬁﬂq:)]} (8)

m=-j

In view of Znpm X Zwmw = Smm Zyum, Wwe then get

£
E.(gr prat) = E Zam(m2) €XPy ( IMA Pz + ltmlu'qz) . )

m-:—j

The exponential term corresponds {0 a quadratic Hamiltonian, for which the propagator may
be calculated by means of the general formula of Gadella et al {10]. The propagator of a
Hamilton function H(u) = 1 5 'uSu -+ ‘cu with u = (¢, p), ¢, p € R is accordingly

ot o —ib(t)/h i
Bylu,t) = m exp (EGW’ r)) (10)
with
Gu, 1) ="(u+ ja®) I (E¢) - DEO + D™ (u+ ja@) 'uda(?)
and

t N
a(f) = ft Z(s)Jeds b(t) = é—f f teB(r — s)Jedrds
0 0 Jo

where J is the symplectic matrix (2} and Z{#) = exp{(—J5¢). Doing some analysis we
find together with (6) that

2 22
i/p thm*u® 5
S(u Z —_— = - t— —
m_Z_j mﬁn)exp[ - (2M mﬁuqz) TR ] (11)
. . o 1
and for a particle with spin j = 3
i2 i3 ,,2,3
—a _ _ip*t  ihpft Mgt . . MAggt
E(u; 8, ¢) —exp( AR 96H ) (cos > +1i 300568111—-'2 ) . (12)
Any initial state function in phase space po(y) now propagates according to
ply. 1) = By, 1) x poly) x B(y, )" (13)
The spectral function is simply the Fourier transform of the propagator [10]
i .
Ay, B} = T f By, Ne'Frar (14}
13 8M ( 1 )]
= Al P’ —mhug, — E (15)
m_Z_J mzuzﬁ“ [\/m utpt \2ZM

with the Airy function Ai(z) = (2m)™" f exp(—ivz — iv3/3) dv.
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4. Evolution of a coherent spin state

Let us first look at coherent rotational states (CRS) in the WwM formalism. The CRS [12]
are the eigenstates of the operator aJ, with eigenvalue % f and orientation vector a € R?,
la| = 1. Let the corresponding Wigner function be denoted by {,. This function is most
easily obtained from the spectral function of aJ. Let R(a) € §O(3) be a rotation operator,
which turns the ‘north’ pole (0,0, 1} to a and J, 10 aJ. The phase-space function J, (7}
is transformed into Jo(n) =3, mh Zhm (R(a)r) with the associated propagator

; 4
Za(n, 1) = exp (‘% am)r) = ) e, (Ram). (16)

m=-f

The spectral function

i
Ag(n, E) = ﬁ f Boln, )5 dt = Y S(E — mh)Z},, (R(a)n) amn
P

yields at E = A the eigenfunction &, = ZJ’J (R{a)n). For a Spin-% particle in a pure state
lae, B} with Jee|® + |8[% = 1, this function may be written as

La(n) = % + \/Tgan (18)
with @ = (Re20*8, Im2e* 8. a*a — B*f).

Let the initial wavepacket, which enters the magnetic field region, be a product of
some function ¢(g) in configuration space and a pure spin function, We restrict our
consideration to minimum uncertainty wavepackets, whose geometric centre about {(§) = g
and {P) = po = Mv moves with velocity »

1 (@ — o)’ i
P(D) = G5y P [“Tzo‘] exp [E'Poq:| : (19)

Figure 2. The spin part of the initial Wigner function, which is a coherent rotational state,
polarized in the x-direction. It is shown from behind in order to display the negative part, which
is the smalier ball.
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Units are choosen such that § = 1 and % = 1, We apply the parity operator [11] on (19)
and get the corresponding Wigner function:

p@pm) == j; g - )p(a+ ) ds 20)

1
= 73 °*P [(g— q0)*]exp [~ — p0)*] .

The total phase-space function is the product of the coherent spin state function (18)
and the orbital part (20):

1 1 3
Pa(g, P, 1) = —s exp [—(g — q0)*] exp[— (@ ~ po)?] (5 + ?an) : @2n)
ipla)l o
~ 4
; g-4,
P-p,
() ° -4

Pulg.p)

Figure 3. Free evolution of the minimum uncertainty Wigner function (23) for t = 0 (a) and
= % (). The configuration probability density (33) is projected onto the left-hend side and
the momentum probability density (34) is projected onto behind in arbitrary units,
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The time evolution of this state function may be calculated according to (13) and (1) and
we get

Pal(@ P 1 ) = pP g, pr, ) 92 Gy, Py 1) 0G0 P2 10 1) (22)
with
1
(g, p, ) = p%(g, p.t) = —exp[—(g — g0 = pt/MY]exp[~(p = po)’] (23)
and
pg, p. 6.6,
I {l1+a
= — |5 exp[ (@ — a0 — pt/M + p*j4M)]
1 /3
x exp [—(p — po — ut/2)*] (5 + =5 cos 6)
] _—
+—5 = exp[—(q — g0 = pt/M - ur/4nt’]
1 3
x exp[—(p — po+ 11/2)?] (:—2- - Tcos&)

+exp[—(q — go — pt/M)*]
x exp[—(p — po)*] g siné (ax cos ¢ + ay sin go) } (24)

with ¢ = ¢ — put(g — pt/2M).

Parts of this function are plotted for different times in figures 3, 4 and 5 together
with the corresponding probability densities in momentum and configuration space obtained
by integration as explained in the appendix. Figure 3 shows the orbital part of the spin
averaged Wigner function. For the y-direction, where the magnetic field is homogeneous,
this is especially the free evolution of the wavepacket. Note that the Wigner function
of the wavepacket undergoes merely a deformation in phase space which has a natural
explanation in terms of classical mechanics. This has to be contrasted with the evolution
of the probability density in configuration space, where due to neglecting the momentum
information only a spread is observed. This type of broadening which results from the
rotation of the wavepacket in orbital phase space described by a complex width parameter
should be carefully distinguished from the irreversible spreading due to diffusion processes,
which must be described by real width parameters.

Similarly, as shown in figure 4, where the evolution parallel to the static component
of the magnetic field is shown, we find a much stronger effect in phase space than in
configuration or momentum space. Almost complete separation of the spin ‘up’ and spin
‘down’ component of the spin averaged wavefunction is found in figure 4(b) at time ¢t = %
where there is none in configuration space and still a strong overlap in momentum space.

That the spin part of the Wigner function also carries some interesting information is
seen in figure 5. The spin part is shown here at the lower maximum of the orbital part for
the times ¢ = % and t = % It has to be compared with the spin function at ¢t = 0 from
figure 2. Att = % the spin function has almost reached its final value with the direction of
the maximum parallel to the —e, axis and a shape, that is typical for a pure spin state like
the one shown in figure 2.

The direction of the maximum of the spin part moved from an angle of 90° to the —e,
axis at ¢ = to about 38° at ¢ = %, however the shape shows, that this is neither a pure nor
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Figure 4. The propagated minitnum dncertainty Wigner function (24) after integration over all
spin directions, and projected onto the z-direction, where the magnetic field is inhomogeneous
for time ¢ = 3 (a) and ¢ = 3 (b). We have choosen gy = 10. The configuration and momentum

probability density is projected as in figure 3.

a conventional mixed spin state with positive eigenvalues. Because of the intertwinement
of the spin and orbital motion in this region, there is no simple interpretation {15], similar
to the negative probabilities of Wigner functions on the orbital phase space.

5. Probabilities in phase space

In order to interprete the Wigner phase-space function in a classical mechanical way, we need
some kind of smoothing procedure, that washes out the psendoprobability structure. Most
famous is the family of Husimi functions pf' [13, 14], which is essentially the expectation
value of the density operator 6 in some squeezed coherent state |g/o, op) of the Weyl
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Ny

1

{®)

Figure 5. Spin part of the propagated Wigner function (24} at time ¢ = 2, (g, p) = (9.5, —0.75)
(a) and ¢t = %, (g. p} = (8.5, —=1.25) (b), where the orbital part of the Wigner function reaches
a maximum (see figure 3).

algebra with the squeezing parameter o

e q, p) = (g/o,opiflg/o, op). (25)

It has a simple probabilistic interpretation and in the limiting cases o — ¢ and o — oo we
recover the configuration resp. momentum probability density

lim 7', p)/o = 19(a)? (26)
Tim o7(g. p)o = |x@)*. 27)

In a similar way we may define the Husimi analogue function @, of the CRS |a) as
Qa(n) = (nlaialn) = fsi En () a() dr’ = L + Lam. 28)

The Husimi function may be calculated directly from the Wigner function " by convolution
with the Wigner function of the squeezed coherent state |g/o, op)

1 ,
pf(q, P) = ; Lﬁ p“ (qr, pi)e—(q)_Q)zfa'z_(P'—P)za2 dqr dpf . (29)

Integrating over all spin directions, we obtain from (24) the Husimi function o (again only
for the z-direction)

I1—a I+a
og, p) = 7 ng_uz'i' szﬁm

o2 o.2 5
=V _'_02)2_'_“/%28?&9[———1+Gz(p—po-umt) ]
xexp{ =~ [qg — go + umt*(c? - 1)/(1 + c*)2M
~(@?p+ po)t/(1 + oMY J[1+ 0%+ (/M1 +62)]}. (30)




3520 C W Miiller and F W Meiz

Pulg.p}

Ixtp)l?

I )i’

~16

p—
(b) & -g 16

Figure 6. The Husimi function (30) after integration aver all spin directions at time 7 = § {2)
and ¢t = 5 (b). The configuration and momenturs probability density (26) and (27) is also shown
as in figure 3,

For a qualitative comparison we give a surface plot of the two phase space distributions
(24) and (30) in figure 7. The parabola is the classical trajectory, which corresponds in
accordance with the Ehrenfest theorem to the position and momentum expectation values,
thus the centre of the Gaussian state functions. We remark that in addition to the shear
flow discussed above, we now observe also in phase space an additional spread increasing
with a time-dependent factor {1 -+ (¢ /4M)*1*/? similar to the one found in the configuration
space density. This is the price one has to pay for a probabilistic interpretation on the
basis of the CS of the Weyl algebra. However this factor might be partially reduced by
choosing a squeezing parameter & > 1 or a correlated squeezed state with the largest axis
parallel to the average velocity of the Husimi function. The latter are most easily obtained
by a free evolution of the unified state along a second path which avoids the region of the
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Figure 7. Surface plot of the Wigner function p% (24) (full curve) and the Husimi function pl!
(30} with ¢ = 1 (broken curve) at time r = 5 for the spin ‘np’ component. We have plotted
here only the uncertainty ellipses, where the function values are half their maximum value. The
parabola corresponds to the classical trajectory.

magnetic field and combines somewhere with one of the Stern-Gerlach components similar
to standard double slit experiments.

6. Summary

We show that the Wigner—Weyl-Moyal formalism provides an interesting approach to the
time evolution of spinning particles in inhomogeneous magnetic fields. For large times,
one finds two well separated regions of particies in pure spin ‘vop’ resp. ‘down’ state.
The time-dependent spreading, which is well known from the evolution of wavepackets
in configuration space, does not occure for the Wigner function. For intermediate times
however, there is a intertwinement of spin and orbital motion, so that there is no simple
interpretation of the spin state or orbital parts of the Wigner function. Husimi functions
do not suffer from this drawback, but they reintroduce the undesired spreading if they are
based on coherent states with their axes fixed in phase space.
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Appendix

The configuration or momentum probability density, as shown in figures 3, 4 and 6 is found
by integration of the Wigner function

b@F = [ o*@.pm)dpan B

lx@®)* = fw B p¥(q, p.n)dgdn (32)

x
where the configuration representation is connected with the momentum representation via
the Fourier transform

. 1 A
x{p) = an ./1; & Polg)dg.

We obtain from (24), again only for the z coordinates

. 1+cz/M)=’-{ [_[Q—QO+LLI2/4M-(Po-’r#f/z)!/MF]
9@ = === +apexp oMy

lg — qo — w2 /4M — (po — ut/2)t /M)
+(1 —a;}exp [— T+ /M) ] } (33)
and
1
Ix(p)? = ‘/; {1 +ayexp[—(p — po — ut/2)°]
+(1=~a)exp[~(p — po+ut/2)%]} . (34)
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